

1

The ROM PSET Unwound

THE ROM PSET UNWOUND – MDJ 2023/03/16

NOTE: LABELS AND COMMENTS ARE LOOSELY BASED ON THE UNRAVELLED II SERIES,
 BUT NOT EXACTLY.

"-" UNDER BYT ==> BYTE(S) ALREADY COUNTED ONCE.

 CYC BYT
 --- ---
9361 86 01 PSET LDA #$01 2 PSET FLAG
9363 20 01 BRA L9366 2

9366 97 C2 L9366 STA SETFLG 2 STORE FLAG
9368 BD B2 6A JSR LB26A 3 SYNTAX CHECK FOR ‘(

B26A C6 28 LB26A LDB #'(2 SYNTAX CHECK FOR ‘(
B26C 8C FCB SKP2 1 SKIP 2 BYTES
B26D C6 2C LDB #', 2 SYNTAX CHECK FOR COMMA

 ** AN AMUSING BIT OF CODE HERE. ACTUALLY, 8C IS THE
 OPCODE FOR CMPX IMMEDIATE (MC6809 COOKBOOK, PAGE 171.
 THUS: 8C
 C6 2C = 8C C6 2C = CMPX #$C62C
 BUT, SINCE NO BRANCH INSTRUCTION FOLLOWS, THE THREE
 BYTES 8C C6 2C DO NOTHING EXCEPT TAKE UP SPACE AND
 WASTE CYCLES, WHILE NONETHELESS BEING NECESSARY IN
 ORDER TO AVOID ACTUALLY DOING AN "LDB #'," HERE.

2

B26F E1 9F 00 A6 CMPB [CHARAD] 4 COMPARE B TO CURRENT INPUT
B273 26 02 BNE LB277 2 CHAR: SNTX ERR IF NO MATCH

 ** ASSUMING NO SYNTAX ERROR, THE BRANCH WILL NOT BE TAKEN

B275 0E 9F JMP GETNCH 2 GET A CHARACTER FROM BASIC

009F 0C A7 GETNCH INC <CHARAD+1 2 INCR INPUT POINTER LOW BYTE
00A1 26 02 BNE GETCCH 2 BRANCH IF NOT 0 (NO CARRY)

 ** SINCE OUR PURPOSE HERE IS TO SEE HOW MANY BYTES AND
 CYCLES WE CAN SAVE, WE WILL ASSUME THE BRANCH IS
 TAKEN HERE. THIS WILL ALLOW US TO COMPARE OUR
 PROPOSED IMPROVEMENTS ADGAINST THE LEANEST POSSIBLE
 INTERPRETATION OF THE EXISTING PSET CODE.

00A5 B6 GETCCH FCB $B6 1 OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD 2 THESE 2 BYTES CONTAIN ADDR
 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK 3 JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 2 IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 2 BRANCH IF > 9

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

AA28 39 LAA28 RTS 1 CALLED FROM 9368

3

936B BD 93 1A JSR L931A 3 EVAL HOR & VER AND NORMALIZE

931A BD 92 FC L931A JSR L92FC 3 GO GET HOR & VER COORDINATES

92FC BD B7 34 L92FC JSR LB734 3 EVALUATE TWO EXPRESSIONS
 FROM THE BASIC LINE - RETURN
 WITH THE 1ST VALUE IN BINVAL
 AND THE 2ND IN ACCB

B734 8D 07 LB734 BSR LB73D 2 EVALUATE AN EXPRESSION

B73D BD B1 41 LB73D JSR LB141 3 EVALUATE NUMERIC EXPRESSION

B141 8D 13 LB141 BSR LB156 2 CHECK FOR NUMERIC

B156 8D 6E LB156 BSR B1C6 2 BACK UP INPUT POINTER

B1C6 9E A6 LB1C6 LDX CHARAD 2 GET BASIC’S INPUT POINTER
B1C8 7E AE BB JMP LAEBB 3 AND MOVE IT BACK ONE

AEBB 30 1F LAEBB LEAX -1,X 2 MOV TO JUST BEF STRT OF LINE
AEBD 9F A6 STX CHARAD 2 RESET BASIC’S INPUT POINTER
AEBF 39 RTS 1 CALLED FROM B156

B158 4F CLRA 1 END OF OP PRECEDENCE FLAG
B159 8C FCB SKP2 1 SKIP 2 BYTES
B15A 34 04 PSHS B 2 THIS IS SKIPPER

 ** SINCE 8C IS THE OPCODE FOR CMPX IMMEDIATE,
 THE "PSHS B" IS SKIPPED.

4

B15C 34 02 PSHS A 2 SAVE FLAG (PRECEDENCE FLAG)
B15E C6 01 LDB #1 2
B160 BD AC 33 JSR LAC33 2 FREE RAM ROOM FOR (B) WORDS?

AC33 4F LAC33 CLRA 1 ACCD CONTAINS NUMBER OF XTRA
AC34 58 ASLB 1 BYTES TO PUT ON STACK
AC35 D3 1F ADDD ARYEND 2 END OF PROGRAM AND VARIABLES
AC37 C3 00 3A ADDD #STKBUF 3 ROOM FOR STACK?
AC3A 25 08 BCS LAC44 2 BRANCH IF GREATER THAN $FFFF

 ** SINCE > $FFFF WOULD BE AN ERROR, WE WILL
 ASSUME THE BRANCH IS NOT TAKEN.

AC3C 10 DF 17 STS BOTSTK 3 CUR NEW BOTTOM OF STACK PTR
AC3F 10 93 17 CMPD BOTSTK 3 WILL WE BE BELOW STACK?
AC42 25 EE BCS LAC32 2 YES - NO ERROR

AC32 39 RTS 1 CALLED FROM B160

B163 BD B2 23 JSR LB223 3 GO EVALUATE AN EXPRESSION

B223 BD 01 8B LB223 JSR RVEC15 3 HOOK INTO RAM

018B 7E CE D2 RVEC15 JMP $CED2 3 DISK BASIC 1.1 VECTOR

CED2 A6 64 DVEC15 LDA $04,S 2 CHK STACKED PRECEDENCE FLAG
CED4 26 13 BNE LCEE9 2 GO IF NOT END OF OP

 ** WE WILL ASSUME IT IS NOT THE END OF AN OPERATION.
 AND THUS THE BRANCH IS TAKEN (LEANEST PSET)

5

CEE9 7E 88 46 LCEE9 JMP XVEC15 3 EXTENDED BASIC EXPR EVAL

8846 35 40 XVEC15 PULS U 2 PULL RTS ADDRESS; SAVE IN U
8848 0F 06 CLR VALTYP 2 SET VARIABLE TYPE TO NUMERIC
884A 9E A6 LDX CHARAD 2 CURRENT INPUT POINTER TO X
884C 9D 9F JSR GETNCH 2 GET CHARACTER FROM BASIC

009F 0C A7 GETNCH INC <CHARAD+1 - INCR INPUT POINTER LOW BYTE
00A1 26 02 BNE GETCCH - BRANCH IF NOT 0 (NO CARRY)

 ** SINCE OUR PURPOSE HERE IS TO SEE HOW MANY BYTES AND
 CYCLES WE CAN SAVE, WE WILL ASSUME THE BRANCH IS
 TAKEN HERE. THIS WILL ALLOW US TO COMPARE OUR
 PROPOSED IMPROVEMENTS ADGAINST THE LEANEST POSSIBLE
 INTERPRETATION OF THE EXISTING PSET CODE.

00A5 B6 GETCCH FCB $B6 - OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD - THESE 2 BYTES CONTAIN ADDR
 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK - JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 - IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 - BRANCH IF > 9

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

AA28 39 LAA28 RTS - CALLED FROM 884C

884E 81 26 CMPA #'&' 2 HEX AND OCTAL?

6

8850 27 99 BEQ L87EB 2 GO IF YES

 ** WE WILL ASSUME IT IS DECIMAL AND THUS THE BRANCH
 IS NOT TAKEN.

8852 81 CC CMPA #$CC 2 FUNCTION CALL TOKEN?
8854 27 5E BEQ L88B4 2 GO IF YES

 ** WE WILL ASSUME IT IS NOT A FUNCTION CALL AND
 THUS THE BRANCH IS NOT TAKEN.

8856 81 FF CMPA #$FF 2 SECONDARY TOKEN?
8858 26 08 BNE L8862 2 GO IF NO

 ** WE WILL ASSUME IT IS NOT A SECONDARY FUNCTION
 AND THUS THE BRANCH IS TAKEN.

8862 9F A6 L8862 STX CHARAD 2 RESTORE BASIC’S INPUT PTR
8864 6E C4 JMP ,U 2 CALLED FROM B223

 ** GIVEN THE "PULS U" AT 8846, THIS "JMP ,U" = RTS

B226 0F 06 CLR VALTYP 2 INIT TYPE FLAG TO NUMERIC
B228 9D 9F JSR GETNCH 2 GET AN INPUT CHAR

009F 0C A7 GETNCH INC <CHARAD+1 - INCR INPUT POINTER LOW BYTE
00A1 26 02 BNE GETCCH - BRANCH IF NOT 0 (NO CARRY)

 ** SINCE OUR PURPOSE HERE IS TO SEE HOW MANY BYTES AND
 CYCLES WE CAN SAVE, WE WILL ASSUME THE BRANCH IS
 TAKEN HERE. THIS WILL ALLOW US TO COMPARE OUR

7

 PROPOSED IMPROVEMENTS ADGAINST THE LEANEST POSSIBLE
 INTERPRETATION OF THE EXISTING PSET CODE.

00A5 B6 GETCCH FCB $B6 - OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD - THESE 2 BYTES CONTAIN ADDR
 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK - JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 - IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 - BRANCH IF > 9

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

AA28 39 LAA28 RTS - CALLED FROM B228

B22A 24 03 BCC LB22F 2 BRANCH IF NOT NUMERIC

 ** WE WILL ASSUME THAT IT IS NUMERIC AND THUS
 THE BRANCH IS NOT TAKEN

B22C 7E BD 12 JMP LBD12 3 CONVERT ASCII STRING TO
 FLOATING POINT - RETURN
 RESULT IN FPA0

BD12 9E 8A LBD12 LDX ZERO 2 (X) = 0
BD14 9F 54 STX FP0SGN 2 ZERO OUT FPA0 & SIGN FLAG
BD16 9F 4F STX FP0EXP 2
BD18 9F 51 STX FPA0+1 2
BD1A 9F 52 STX FPA0+2 2

8

BD1C 9F 47 STX V47 2 INITIALIZE EXPONENT & SIGN
 FLAG TO ZERO
BD1E 9F 45 STX V45 2 INITIALIZE RIGHT DECIMAL CTR
 & DECIMAL PT FLAG TO 0
BD20 25 64 BCS LBD86 2 IF CARRY SET (NUMERIC
 CHARACTER), ASSUME ACCA
 CONTAINS FIRST NUMERIC CHAR,
 SIGN IS POSITIVE AND SKIP
 THE RAM HOOK

 ** WE WILL ASSUME A NUMERIC CHARACTER AND THUS THE
 BRANCH IS TAKEN (LEANEST PSET).

BD86 D6 45 LBD86 LDB V45 2 GET THE RIGHT DECIMAL COUNTER
BD88 D0 46 SUBD V46 2 AND SUBTRACT DECIMAL PNT FLAG
BD8A D7 45 STB V45 2
BD8C 34 02 PSHS A 2 SAVE NEW DIGIT ON STACK
BD8E BD BB 6A JSR LBB6A 3 MULTIPLY FPA0 BY 10

BB6A BD BC 5F LBB6A JSR LBC5F 3 TRANSFER FPA0 TO FPA1

BC5F DC 4F LBC5F LDD FP0EXP 2 TRANSFER EXPONENT & MS BYTE
BC61 DD 5C STD FP1EXP 2
BC63 9E 51 LDX FPA0+1 2 TRANSFER MIDDLE TWO BYTES
BC65 9F 5E STX FPA1+1 2
BC67 9E 53 LDX FPA0+3 2 TRANSFER BOTTOM TWO BYTES
BC69 9F 60 STX FPA1+3 2
BC6B 4D TSTA 1 SET FLAGS PER EXPONENT
BC6C 39 RTS 1 CALLED FROM BB6A

BB6D 27 0D BEQ LBB7C 2 BRANCH IF EXPONENT = 0

9

 ** WE WILL ASSUME THE EXPONENT = 0 (TO BE EXPECTED
 FOR A SCREEN COORDINATE; ALSO FOR LEANEST PSET),
 AND THUS THE BRANCH IS TAKEN

BB7C 39 RTS 1 CALLED FROM BD8E

BD91 35 04 PULS B 2 GET NEW DIGIT BACK
BD93 C0 30 SUBB #'0 2 MASK OFF ASCII
BD95 8D 02 BSR LBD99 2 ADD ACCB TO FPA0

BD99 BD BC 2F LBD99 JSR LBC2F 3 PACK FPA0 AND SAVE IN FPA3

BC2F 8E 00 40 LBC2F LDX #V40 3 POINT X TO MANTISSA OF FPA3
BC32 8C FCB SKP2 1 SKIP TWO BYTES
BC33 9E 3B LDX VARDES 2 POINT X TO VAR DESCRIPTOR

 ** SINCE 8C IS THE OPCODE FOR CMPX IMMEDIATE,
 THE "LDX VARDES" IS SKIPPED.

BC35 96 4F LDA FP0EXP 2 COPY EXPONENT
BC37 A7 84 STA ,X 2
BC39 96 54 LDA FP0SGN 2 GET MANTISSA SIGN BIT
BC3B 8A 7F ORA #$7F 2 MASK THE BOTTOM 7 BITS
BC3D 94 50 ANDA FPA0 2 AND BIT 7 OF MANTISSA SIGN
 INTO BIT 7 OF MS BYTE
BC3F A7 01 STA 1,X 2 SAVE MS BYTE
BC41 96 51 LDA FPA0+1 2 MOVE 2ND MANTISSA BYTE
BC43 A7 02 STA 2,X 2
BC45 DE 52 LDU FPA0+2 2 MOVE BOTTOM 2 MANTISSA BYTES
BC47 EF 03 STU 3,X 2

10

BC49 39 RTS 1 CALLED FROM BD99

BD9C BD BC 7C JSR LBC7C 2 CONVERT B TO FP NUM IN FPA0

BC7C D7 50 LBC7C STB FPA0 2 SAVE ACCB IN FPA0
BC7E 0F 51 CLR FPA0+1 2 CLEAR 2ND MANTISSA FPA0 BYTE
BC80 C6 88 LDB #$88 2 EXPONENT FOR FPA0 BE INTEGER
BC82 96 50 LDA FPA0 2 GET MS BYTE OF MANTISSA
BC84 80 80 SUBA #$80 2 SET CARRY IF POSITIVE MTSSA
BC86 D7 4F STB FP0EXP 2 SAVE EXPONENT
BC88 DC 8A LDD ZERO 2 ZERO OUT ACCD AND
BC8A DD 52 STD FPA0+2 2 BOTTOM HALF OF FPA0
BC8C 97 63 STA FPSBYT 2 CLEAR SUB BYTE
BC8E 97 54 STA FP0SGN 2 CLEAR SIGN OF FPA0 MANTISSA
BC90 7E BA 18 JMP LBA18 3 GO NORMALIZE FPA0

BA18 25 02 LBA18 BCS LBA1C 2 BRANCH IF POSITIVE MANTISSA

 ** WE WILL ASSUME THAT THE MANTISSA IS POSITIVE
 AND THUS THE BRANCH IS TAKEN.

BA1C 5F LBA1C CLRB 1 CLEAR TEMP EXPONENT ACCUM
BA1D 96 50 LDA FPA0 2 TEST MSB OF MANTISSA
BA1F 26 2E BNE LBA4F 2 BRANCH IF <> 0

 ** WE WILL ASSUME THAT THE MSB IS <> 0 AND THUS
 THE BRANCH IS TAKEN (LEANEST PSET).

BA4F 2A F3 LBA4F BPL LBA44 2 BRANCH IF NOT YET NORMALIZED

 ** WE WILL ASSUME THAT IT IS ALREADY NORMALIZED AND THUS

11

 THE BRANCH IS NOT TAKEN (LEANEST PSET).

BA51 96 4F LDA FP0EXP 2 GET CURRENT EXPONENT
BA53 34 04 PSHS B 2 SAVE EXPONENT MODIFIER
BA55 A0 E0 SUBA ,S+ 2 SUBTRACT EXPONENT MODIFIER
 AND CLEAR IT OFF THE STACK
BA57 97 4F STA FP0EXP 2 SAVE AS NEW EXPONENT
BA59 23 DE BLS LBA39 2 SET FPA0 = 0 IF THE
 NORMALIZATION CAUSED MORE
 OR EQUAL NUMBER OF LEFT
 SHIFTS THAN THE SIZE OF THE
 EXPONENT

 ** WE WILL ASSUME THIS DIDN'T HAPPEN AND THUS
 THE BRANCH IS NOT TAKEN (LEANEST PSET).

BA5B 8C FCB SKP2 1 SKIP 2 BYTES
BA5C 25 08 BCS LBA66 2 BRANCH IF MANTISSA OVERFLOW

 ** SINCE 8C IS THE OPCODE FOR CMPX IMMEDIATE,
 THE "BCS LBA66" IS SKIPPED.

BA5E 08 63 ASL FPSBYT 2 SUB BYTE BIT 7 TO CARRY
BA60 86 00 LDA #0 2 CLRA DON'T CHANGE CARRY FLAG
BA62 97 63 STA FPSBYT 2 CLEAR THE SUB BYTE
BA64 20 0C BRA LBA72 2 GO ROUND-OFF RESULT

BA72 24 04 LBA72 BCC LBA78 2 BRANCH IF NO ROUNDOFF NEEDED

 ** WE WILL ASSUME NO ROUNDOFF IS NEEDED AND THUS
 THE BRANCH IS TAKEN (LEANEST PSET).

12

BA78 39 LBA78 RTS 1 CALLED FROM BD9C

BD9F 8E 00 40 LDX #V40 3 ADD FPA0 TO FPA3
BDA2 7E B9 C2 JMP LB9C2 3

B9C2 BD BB 2F LB9C2 JSR LBB2F 3 UNPACK PACKED FP DATA

BB2F EC 01 LBB2F LDD 1,X 2 GET TWO MSB BYTES
BB31 97 61 STA FP1SGN 2 SAVE MANTISSA SIGN BYTE
BB33 8A 80 ORA #$80 2 FORCE BIT 7 OF MANTISSA = 1
BB35 DD 5D STD FPA1 2 SAVE 2 MSB BYTES IN FPA1
BB37 D6 61 LDB FP1SGN 2 GET PACKED MANTISSA SGN BYTE
BB39 D8 54 EORB FP0SGN 2 XOR FPA0 SIGN BYTE
BB3B D7 62 STB RESSGN 2 SAVE ADJUSTED SIGN BYTE
BB3D EC 03 LDD 3,X 2 GET 2 LSB BYTES OF MANTISSA
BB3F DD 5F STD FPA1+2 2 AND PUT IN FPA1
BB41 A6 84 LDA ,X 2 GET EXPONENT FROM (X) AND
BB43 97 5C STA FP1EXP 2 PUT IN EXPONENT OF FPA1
BB45 D6 4F LDB FP0EXP 2 GET EXPONENT OF FPA0
BB47 39 RTS 1 CALLED FROM B9C2

B9C5 5D TSTB 1 CHECK EXPONENT OF FPA0
B9C6 10 27 02 80 LBEQ LBC4A 4 GO IF FPA0 = 0

 ** WE WILL ASSUME FPA0 = 0 (LEANEST PSET)
 AND THUS THE BRANCH IS TAKEN.

BC4A 96 61 LBC4A LDA FP1SGN 2 MOVE FPA1 TO FPA0
BC4C 97 54 LBC4C STA FP0SGN 2
BC4E 9E 5C LDX FP1EXP 2

13

BC50 9F 4F STX FP0EXP 2
BC52 0F 63 CLR FPSBYT 2
BC54 96 5E LDA FPA1+1 2
BC56 97 51 STA FPA0+1 2
BC58 96 54 LDA FP0SGN 2
BC5A 9E 5F LDX FPA1+2 2
BC5C 9F 52 STX FPA0+2 2
BC5E 39 RTS 1 CALLED FROM BD95

BD97 20 98 BRA LBD31 2 GET ANOTHER CHAR FROM BASIC

BD31 9D 9F LBD31 JSR GETNCH 2 GET NEXT INPUT CHARACTER

009F 0C A7 GETNCH INC <CHARAD+1 - INCR INPUT POINTER LOW BYTE
00A1 26 02 BNE GETCCH - BRANCH IF NOT 0 (NO CARRY)

 ** SINCE OUR PURPOSE HERE IS TO SEE HOW MANY BYTES AND
 CYCLES WE CAN SAVE, WE WILL ASSUME THE BRANCH IS
 TAKEN HERE. THIS WILL ALLOW US TO COMPARE OUR
 PROPOSED IMPROVEMENTS ADGAINST THE LEANEST POSSIBLE
 INTERPRETATION OF THE EXISTING PSET CODE.

00A5 B6 GETCCH FCB $B6 - OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD - THESE 2 BYTES CONTAIN ADDR
 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK - JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 - IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 - BRANCH IF > 9

14

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

AA28 39 LAA28 RTS - CALLED FROM BD31

BD33 25 51 BCS LBD86 2 BRANCH IF NUMERIC CHARACTER

 ** HAVING BEEN THROUGH LBD86 BEFORE, WE WILL ASSUME
 THAT IT IS NOT A NUMERIC CHARACTER AND THUS THE
 BRANCH IS NOT TAKEN (LEANEST PSET).

BD35 81 2E LBD35 CMPA #'. 2 DECIMAL POlNT?
BD37 27 28 BEQ LBD61 3 GO IF YES

 ** WE WILL ASSUME THAT IT IS NOT A DECIMAL POINT
 AND THUS THE BRANCH IS NOT TAKEN.

BD39 81 45 CMPA #'E 2 "E" (SCIENTIFIC NOTATION)?
BD3B 26 28 BNE LBD65 2 GO IF NO

 ** WE WILL ASSUME IT IS NOT SCIENTIFIC NOTATION
 AND THUS THE BRANCH IS TAKEN.

BD65 96 47 LBD65 LDA V47 2 GET EXPONENT, SUBTRACT THE
BD67 90 45 SUBA V45 2 NUMBER OF PLACES TO RIGHT
BD69 97 47 STA V47 2 OF DECIMAL POINT AND RESAVE
BD6B 27 12 BEQ LBD7F 2 EXIT IF ADJUSTED EXPONENT= 0

 ** WE WILL ASSUME THE ADJUSTED EXPONENT IS ZERO
 AND THUS THE BRANCH IS TAKEN.

15

BD7F 96 55 LBD7F LDA COEFCT 2 GET THE SIGN FLAG
BD81 2A 8E BPL LBD11 2 RETURN IF POSITIVE

 ** WE WILL ASSUME THE RESULT IS NOT POSITIVE AND
 THUS THE BRANCH IS NOT TAKEN (LEANEST PSET).

BD83 7E BE E9 JMP LBEE9 3 TOGGLE MANTISSA SIGN OF FPA0

BEE9 96 4F LBEE9 LDA FP0EXP 2 GET EXPONENT OF FPA0
BEEB 27 02 BEQ LBEEF 2 BRANCH IF FPA0 = 0

 ** WE WILL ASSUME FPA0 <>0 AND THUS THE BRANCH
 IS NOT TAKEN.

BEED 03 54 COM FP0SGN 2 TOGGLE MANTISSA SIGN OF FPA0
BEEF 39 LBEEF RTS 1 CALLED FROM B163

B166 0F 3F CLR TRELFL 2 RESET RELATIONAL OP FLAG
B168 9D A5 JSR GETCCH 2 GET CURRENT INPUT CHARACTER

00A5 B6 GETCCH FCB $B6 - OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD - THESE 2 BYTES CONTAIN ADDR
 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK - JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 - IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 - BRANCH IF > 9

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

16

AA28 39 LAA28 RTS - CALLED FROM B168

B16A 80 B2 SUBA #$B2 2 TOKEN FOR >
B16C 25 13 BCS LB181 2 BRANCH IF < RELATIONAL OPS

 ** WE WILL ASSUME THAT IT IS LESS AND THUS THE
 BRANCH IS TAKEN (LEANEST PSET)

B181 D6 3F LB181 LDB TRELFL 2 GET RELATIONAL OPERATOR FLAG
B183 26 33 BNE LB1B8 2 BRANCH IF RELATIONAL COMPARISON

 ** WE WILL ASSUME THAT IT IS NOT A RELATIONAL COMPARISON
 AND THUS THE BRANCH IS NOT TAKEN (LEANEST PSET).

B185 10 24 00 6B LBCC LB1F4 4 BRANCH IF > RELATIONAL OP

 ** WE WILL ASSUME THAT IT IS > RELATIONAL COMPARISON
 AND THUS THE BRANCH IS TAKEN (LEANEST PSET).

B1F4 9E 8A LB1F4 LDX ZERO 2 POINT X TO DUMMY VALUE (0)
B1F6 A6 E0 LDA ,S+ 2 GET PRECEDENCE FLAG FROM STK
B1F8 27 26 BEQ LB220 2 BRANCH IF END OF EXPRESSION

 ** WE WILL ASSUME THAT IT IS END OF EXPRESSION AND
 THE BRANCH IS TAKEN (LEANEST PSET).

B220 D6 4F LB220 LDB FP0EXP 2 GET EXPONENT OF FPA0
B222 39 RTS 1 CALLED FROM B141

B143 1C FE LB143 ANDCC #$FE 2 CLEAR CARRY FLAG

17

B145 7D FCB $7D 1 OP CODE OF TST $1A01
 SKIP TWO BYTES (DO NOT
 CHANGE CARRY FLAG)
B146 1A 01 ORCC #1 2 SET CARRY
B148 0D 06 TST VALTYP 2 TEST TYPE FLAG
B14A 25 03 BCS LB14F 2 BRANCH IF STRING

 ** WE WILL ASSUME IT IS NOT A STRING AND THUS
 THE BRANCH IS NOT TAKEN

B14C 2A 99 BPL LB0E7 2 RETURN ON PLUS

 ** WE WILL ASSUME THAT IT IS POSITIVE AND THUS
 THE BRANCH IS TAKEN (POSITIVE IS TO BE
 EXPECTED FOR SCREEN COORDINATES; ALSO FOR
 LEANEST PRESET).

B0E7 39 LB0E7 RTS 1 CALLED FROM B73D

B740 96 54 LDA FP0SGN 2 GET SIGN OF FPA0 MANTISSA
B742 2B C2 BMI LB706 2 'ILLEGAL FUNCTION CALL'

 ** WE WILL ASSUME THE BRANCH IS NOT TAKEN

B744 96 4F LDA FP0EXP 2 GET EXPONENT OF FPA0
B746 81 90 CMPA #$90 2 COMPARE TO LARGEST POS INT
B748 22 BC BHI LB706 2 'ILLEGAL FUNCTION CALL'

 ** WE WILL ASSUME THE BRANCH IS NOT TAKEN

B74A BD BC C8 JSR LBCC8 3 SHIFT BINARY POINT TO

18

 EXTREME RIGHT OF FPA0

BCC8 D6 4F LBCC8 LDB FP0EXP 2 GET EXPONENT OF FPA0
BCCA 27 3D BEQ LBD09 2 ZERO MANTISSA IF FPA0 = 0

 ** WE WILL ASSUME FPA0 <> 0 AND THUS THE BRANCH
 IS NOT TAKEN.

BCCC C0 A0 SUBB #$A0 2 SUBTRACT $A0 FROM FPA0 EXP
BCCE 96 54 LDA FP0SGN 2 TEST SIGN OF FPA0 MANTISSA
BCD0 2A 05 BPL LBCD7 2 BRANCH IF POSITIVE

 ** WE WILL ASSUME THAT IT IS POSITIVE AND THUS
 THE BRANCH IS TAKEN (POSITIVE IS TO BE
 EXPECTED FOR SCREEN COORDINATES; ALSO FOR
 LEANEST PRESET).

BCD7 8E 00 4F LBCD7 LDX #FP0EXP 3 POINT X TO FPA0
BCDA C1 F8 CMPB #-8 2 EXPONENT DIFFERENCE < -8?
BCDC 2E 06 BGT LBCE4 2 GO IF YES

 ** WE WILL ASSUME THAT IT IS NOT AND THUS
 THE BRANCH IS NOT TAKEN.

BCDE BD BA AE JSR LBAAE 3 SHIFT FPA0 RIGHT UNTIL
 FPA0 EXPONENT = $A0

BAAE CB 08 LBAAE ADDB #8 2 ADD 8 TO DIFFERENCE OF EXPS
BAB0 2F E8 BLE LBA9A 2 BRANCH IF EXP DIFF < -8

 ** WE WILL ASSUME THAT IT IS NOT AND THUS

19

 THE BRANCH IS NOT TAKEN.

BAB2 96 63 LDA FPSBYT 2 GET FPA SUB BYTE
BAB4 C0 08 SUBB #8 2 CAST OUT 8 ADDED IN ABOVE
BAB6 27 0C BEQ LBAC4 2 BRANCH IF EXPONENT DIFF = 0

 ** WE WILL ASSUME THAT IT IS EQUAL TO ZERO
 THE BRANCH IS TAKEN.

BAC4 39 LBAC4 RTS 1 CALLED FROM BCDE

BCE1 0F 5B CLR FPCARY 2 CLEAR CARRY IN BYTE
BCE3 39 RTS 1 CALLED FROM B74A

B74D 9E 52 LDX FPA0+2 2 LOWER TWO BYTES OF FPA0
B74F 39 RTS 1 CALLED FROM B734

B736 9F 2B STX BINVAL 2 STORE IT IN BINVAL
B738 BD B2 6D JSR LB26D 3 SYNTAX CHECK FOR A COMMA

B26D C6 2C LDB #', - SYNTAX CHECK FOR COMMA
B26F E1 9F 00 A6 CMPB [CHARAD] - COMPARE B TO CURRENT INPUT
B273 26 02 BNE LB277 - CHAR: SNTX ERR IF NO MATCH

 ** ASSUMING NO SYNTAX ERROR, THE BRANCH WILL NOT BE TAKEN

B275 0E 9F JMP GETNCH - GET A CHARACTER FROM BASIC

009F 0C A7 GETNCH INC <CHARAD+1 - INCR INPUT POINTER LOW BYTE
00A1 26 02 BNE GETCCH - BRANCH IF NOT 0 (NO CARRY)

20

 ** SINCE OUR PURPOSE HERE IS TO SEE HOW MANY BYTES AND
 CYCLES WE CAN SAVE, WE WILL ASSUME THE BRANCH IS
 TAKEN HERE. THIS WILL ALLOW US TO COMPARE OUR
 PROPOSED IMPROVEMENTS ADGAINST THE LEANEST POSSIBLE
 INTERPRETATION OF THE EXISTING PSET CODE.

00A5 B6 GETCCH FCB $B6 - OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD - THESE 2 BYTES CONTAIN ADDR
 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK - JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 - IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 - BRANCH IF > 9

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

AA28 39 LAA28 RTS - CALLED FROM B738

B73B 20 CE BRA LB70B 2 EVAL EXPRIN RANGE 0<=X<256

B70B BD B1 41 LB70B JSR LB141 2 EVAL A NUMERIC EXPRESSION

B141 8D 13 LB141 BSR LB156 - CHECK FOR NUMERIC

B156 8D 6E LB156 BSR B1C6 - BACK UP INPUT POINTER

B1C6 9E A6 LB1C6 LDX CHARAD - GET BASIC’S INPUT POINTER

21

B1C8 7E AE BB JMP LAEBB - AND MOVE IT BACK ONE

AEBB 30 1F LAEBB LEAX -1,X - MOV TO JUST BEF STRT OF LINE
AEBD 9F A6 STX CHARAD - RESET BASIC’S INPUT POINTER
AEBF 39 RTS - CALLED FROM B156

B158 4F CLRA - END OF OP PRECEDENCE FLAG
B159 8C FCB SKP2 - SKIP 2 BYTES
B15A 34 04 PSHS B - THIS IS SKIPPER

 ** SINCE 8C IS THE OPCODE FOR CMPX IMMEDIATE,
 THE "PSHS B" IS SKIPPED.

B15C 34 02 PSHS A - SAVE FLAG (PRECEDENCE FLAG)
B15E C6 01 LDB #1 -
B160 BD AC 33 JSR LAC33 - FREE RAM ROOM FOR (B) WORDS?

AC33 4F LAC33 CLRA - ACCD CONTAINS NUMBER OF XTRA
AC34 58 ASLB - BYTES TO PUT ON STACK
AC35 D3 1F ADDD ARYEND - END OF PROGRAM AND VARIABLES
AC37 C3 00 3A ADDD #STKBUF - ROOM FOR STACK?
AC3A 25 08 BCS LAC44 - BRANCH IF GREATER THAN $FFFF

 ** SINCE > $FFFF WOULD BE AN ERROR, WE WILL
 ASSUME THE BRANCH IS NOT TAKEN.

AC3C 10 DF 17 STS BOTSTK - CUR NEW BOTTOM OF STACK PTR
AC3F 10 93 17 CMPD BOTSTK - WILL WE BE BELOW STACK?
AC42 25 EE BCS LAC32 - YES - NO ERROR

AC32 39 RTS - CALLED FROM B160

22

B163 BD B2 23 JSR LB223 - GO EVALUATE AN EXPRESSION

B223 BD 01 8B LB223 JSR RVEC15 - HOOK INTO RAM

018B 7E CE D2 RVEC15 JMP $CED2 - DISK BASIC 1.1 VECTOR

CED2 A6 64 DVEC15 LDA $04,S - CHK STACKED PRECEDENCE FLAG
CED4 26 13 BNE LCEE9 - GO IF NOT END OF OP

 ** WE WILL ASSUME IT IS NOT THE END OF AN OPERATION.
 AND THUS THE BRANCH IS TAKEN (LEANEST PSET)

CEE9 7E 88 46 LCEE9 JMP XVEC15 - EXTENDED BASIC EXPR EVAL

8846 35 40 XVEC15 PULS U - PULL RTS ADDRESS; SAVE IN U
8848 0F 06 CLR VALTYP - SET VARIABLE TYPE TO NUMERIC
884A 9E A6 LDX CHARAD - CURRENT INPUT POINTER TO X
884C 9D 9F JSR GETNCH - GET CHARACTER FROM BASIC

009F 0C A7 GETNCH INC <CHARAD+1 - INCR INPUT POINTER LOW BYTE
00A1 26 02 BNE GETCCH - BRANCH IF NOT 0 (NO CARRY)

 ** SINCE OUR PURPOSE HERE IS TO SEE HOW MANY BYTES AND
 CYCLES WE CAN SAVE, WE WILL ASSUME THE BRANCH IS
 TAKEN HERE. THIS WILL ALLOW US TO COMPARE OUR
 PROPOSED IMPROVEMENTS ADGAINST THE LEANEST POSSIBLE
 INTERPRETATION OF THE EXISTING PSET CODE.

00A5 B6 GETCCH FCB $B6 - OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD - THESE 2 BYTES CONTAIN ADDR

23

 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK - JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 - IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 - BRANCH IF > 9

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

AA28 39 LAA28 RTS - CALLED FROM 884C

884E 81 26 CMPA #'&' - HEX AND OCTAL?
8850 27 99 BEQ L87EB - GO IF YES

 ** WE WILL ASSUME IT IS DECIMAL AND THUS THE BRANCH
 IS NOT TAKEN.

8852 81 CC CMPA #$CC - FUNCTION CALL TOKEN?
8854 27 5E BEQ L88B4 - GO IF YES

 ** WE WILL ASSUME IT IS NOT A FUNCTION CALL AND
 THUS THE BRANCH IS NOT TAKEN.

8856 81 FF CMPA #$FF - SECONDARY TOKEN?
8858 26 08 BNE L8862 - GO IF NO

 ** WE WILL ASSUME IT IS NOT A SECONDARY FUNCTION
 AND THUS THE BRANCH IS TAKEN.

8862 9F A6 L8862 STX CHARAD - RESTORE BASIC’S INPUT PTR

24

8864 6E C4 JMP ,U - CALLED FROM B223

 ** GIVEN THE "PULS U" AT 8846, THIS "JMP ,U" = RTS

B226 0F 06 CLR VALTYP - INIT TYPE FLAG TO NUMERIC
B228 9D 9F JSR GETNCH - GET AN INPUT CHAR

009F 0C A7 GETNCH INC <CHARAD+1 - INCR INPUT POINTER LOW BYTE
00A1 26 02 BNE GETCCH - BRANCH IF NOT 0 (NO CARRY)

 ** SINCE OUR PURPOSE HERE IS TO SEE HOW MANY BYTES AND
 CYCLES WE CAN SAVE, WE WILL ASSUME THE BRANCH IS
 TAKEN HERE. THIS WILL ALLOW US TO COMPARE OUR
 PROPOSED IMPROVEMENTS ADGAINST THE LEANEST POSSIBLE
 INTERPRETATION OF THE EXISTING PSET CODE.

00A5 B6 GETCCH FCB $B6 - OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD - THESE 2 BYTES CONTAIN ADDR
 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK - JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 - IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 - BRANCH IF > 9

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

AA28 39 LAA28 RTS - CALLED FROM B228

B22A 24 03 BCC LB22F - BRANCH IF NOT NUMERIC

25

 ** WE WILL ASSUME THAT IT IS NUMERIC AND THUS
 THE BRANCH IS NOT TAKEN

B22C 7E BD 12 JMP LBD12 - CONVERT ASCII STRING TO
 FLOATING POINT - RETURN
 RESULT IN FPA0

BD12 9E 8A LBD12 LDX ZERO - (X) = 0
BD14 9F 54 STX FP0SGN - ZERO OUT FPA0 & SIGN FLAG
BD16 9F 4F STX FP0EXP -
BD18 9F 51 STX FPA0+1 -
BD1A 9F 52 STX FPA0+2 -
BD1C 9F 47 STX V47 - INITIALIZE EXPONENT & SIGN
 FLAG TO ZERO
BD1E 9F 45 STX V45 - INITIALIZE RIGHT DECIMAL CTR
 & DECIMAL PT FLAG TO 0
BD20 25 64 BCS LBD86 - IF CARRY SET (NUMERIC
 CHARACTER), ASSUME ACCA
 CONTAINS FIRST NUMERIC CHAR,
 SIGN IS POSITIVE AND SKIP
 THE RAM HOOK

 ** WE WILL ASSUME A NUMERIC CHARACTER AND THUS THE
 BRANCH IS TAKEN (LEANEST PSET).

BD86 D6 45 LBD86 LDB V45 - GET THE RIGHT DECIMAL COUNTER
BD88 D0 46 SUBD V46 - AND SUBTRACT DECIMAL PNT FLAG
BD8A D7 45 STB V45 -
BD8C 34 02 PSHS A - SAVE NEW DIGIT ON STACK
BD8E BD BB 6A JSR LBB6A - MULTIPLY FPA0 BY 10

26

BB6A BD BC 5F LBB6A JSR LBC5F - TRANSFER FPA0 TO FPA1

BC5F DC 4F LBC5F LDD FP0EXP - TRANSFER EXPONENT & MS BYTE
BC61 DD 5C STD FP1EXP -
BC63 9E 51 LDX FPA0+1 - TRANSFER MIDDLE TWO BYTES
BC65 9F 5E STX FPA1+1 -
BC67 9E 53 LDX FPA0+3 - TRANSFER BOTTOM TWO BYTES
BC69 9F 60 STX FPA1+3 -
BC6B 4D TSTA - SET FLAGS PER EXPONENT
BC6C 39 RTS - CALLED FROM BB6A

BB6D 27 0D BEQ LBB7C - BRANCH IF EXPONENT = 0

 ** WE WILL ASSUME THE EXPONENT = 0 (TO BE EXPECTED
 FOR A SCREEN COORDINATE; ALSO FOR LEANEST PSET),
 AND THUS THE BRANCH IS TAKEN

BB7C 39 RTS - CALLED FROM BD8E

BD91 35 04 PULS B - GET NEW DIGIT BACK
BD93 C0 30 SUBB #'0 - MASK OFF ASCII
BD95 8D 02 BSR LBD99 - ADD ACCB TO FPA0

BD99 BD BC 2F LBD99 JSR LBC2F - PACK FPA0 AND SAVE IN FPA3

BC2F 8E 00 40 LBC2F LDX #V40 - POINT X TO MANTISSA OF FPA3
BC32 8C FCB SKP2 - SKIP TWO BYTES
BC33 9E 3B LDX VARDES - POINT X TO VAR DESCRIPTOR

 ** SINCE 8C IS THE OPCODE FOR CMPX IMMEDIATE,

27

 THE "LDX VARDES" IS SKIPPED.

BC35 96 4F LDA FP0EXP - COPY EXPONENT
BC37 A7 84 STA ,X -
BC39 96 54 LDA FP0SGN - GET MANTISSA SIGN BIT
BC3B 8A 7F ORA #$7F - MASK THE BOTTOM 7 BITS
BC3D 94 50 ANDA FPA0 - AND BIT 7 OF MANTISSA SIGN
 INTO BIT 7 OF MS BYTE
BC3F A7 01 STA 1,X - SAVE MS BYTE
BC41 96 51 LDA FPA0+1 - MOVE 2ND MANTISSA BYTE
BC43 A7 02 STA 2,X -
BC45 DE 52 LDU FPA0+2 - MOVE BOTTOM 2 MANTISSA BYTES
BC47 EF 03 STU 3,X -
BC49 39 RTS - CALLED FROM BD99

BD9C BD BC 7C JSR LBC7C - CONVERT B TO FP NUM IN FPA0

BC7C D7 50 LBC7C STB FPA0 - SAVE ACCB IN FPA0
BC7E 0F 51 CLR FPA0+1 - CLEAR 2ND MANTISSA FPA0 BYTE
BC80 C6 88 LDB #$88 - EXPONENT FOR FPA0 BE INTEGER
BC82 96 50 LDA FPA0 - GET MS BYTE OF MANTISSA
BC84 80 80 SUBA #$80 - SET CARRY IF POSITIVE MTSSA
BC86 D7 4F STB FP0EXP - SAVE EXPONENT
BC88 DC 8A LDD ZERO - ZERO OUT ACCD AND
BC8A DD 52 STD FPA0+2 - BOTTOM HALF OF FPA0
BC8C 97 63 STA FPSBYT - CLEAR SUB BYTE
BC8E 97 54 STA FP0SGN - CLEAR SIGN OF FPA0 MANTISSA
BC90 7E BA 18 JMP LBA18 - GO NORMALIZE FPA0

BA18 25 02 LBA18 BCS LBA1C - BRANCH IF POSITIVE MANTISSA

28

 ** WE WILL ASSUME THAT THE MANTISSA IS POSITIVE
 AND THUS THE BRANCH IS TAKEN.

BA1C 5F LBA1C CLRB - CLEAR TEMP EXPONENT ACCUM
BA1D 96 50 LDA FPA0 - TEST MSB OF MANTISSA
BA1F 26 2E BNE LBA4F - BRANCH IF <> 0

 ** WE WILL ASSUME THAT THE MSB IS <> 0 AND THUS
 THE BRANCH IS TAKEN (LEANEST PSET).

BA4F 2A F3 LBA4F BPL LBA44 - BRANCH IF NOT YET NORMALIZED

 ** WE WILL ASSUME THAT IT IS ALREADY NORMALIZED AND THUS
 THE BRANCH IS NOT TAKEN (LEANEST PSET).

BA51 96 4F LDA FP0EXP - GET CURRENT EXPONENT
BA53 34 04 PSHS B - SAVE EXPONENT MODIFIER
BA55 A0 E0 SUBA ,S+ - SUBTRACT EXPONENT MODIFIER
 AND CLEAR IT OFF THE STACK
BA57 97 4F STA FP0EXP - SAVE AS NEW EXPONENT
BA59 23 DE BLS LBA39 - SET FPA0 = 0 IF THE
 NORMALIZATION CAUSED MORE
 OR EQUAL NUMBER OF LEFT
 SHIFTS THAN THE SIZE OF THE
 EXPONENT

 ** WE WILL ASSUME THIS DIDN'T HAPPEN AND THUS
 THE BRANCH IS NOT TAKEN (LEANEST PSET).

BA5B 8C FCB SKP2 - SKIP 2 BYTES
BA5C 25 08 BCS LBA66 - BRANCH IF MANTISSA OVERFLOW

29

 ** SINCE 8C IS THE OPCODE FOR CMPX IMMEDIATE,
 THE "BCS LBA66" IS SKIPPED.

BA5E 08 63 ASL FPSBYT - SUB BYTE BIT 7 TO CARRY
BA60 86 00 LDA #0 - CLRA DON'T CHANGE CARRY FLAG
BA62 97 63 STA FPSBYT - CLEAR THE SUB BYTE
BA64 20 0C BRA LBA72 - GO ROUND-OFF RESULT

BA72 24 04 LBA72 BCC LBA78 - BRANCH IF NO ROUNDOFF NEEDED

 ** WE WILL ASSUME NO ROUNDOFF IS NEEDED AND THUS
 THE BRANCH IS TAKEN (LEANEST PSET).

BA78 39 LBA78 RTS - CALLED FROM BD9C

BD9F 8E 00 40 LDX #V40 - ADD FPA0 TO FPA3
BDA2 7E B9 C2 JMP LB9C2 -

B9C2 BD BB 2F LB9C2 JSR LBB2F - UNPACK PACKED FP DATA

BB2F EC 01 LBB2F LDD 1,X - GET TWO MSB BYTES
BB31 97 61 STA FP1SGN - SAVE MANTISSA SIGN BYTE
BB33 8A 80 ORA #$80 - FORCE BIT 7 OF MANTISSA = 1
BB35 DD 5D STD FPA1 - SAVE 2 MSB BYTES IN FPA1
BB37 D6 61 LDB FP1SGN - GET PACKED MANTISSA SGN BYTE
BB39 D8 54 EORB FP0SGN - XOR FPA0 SIGN BYTE
BB3B D7 62 STB RESSGN - SAVE ADJUSTED SIGN BYTE
BB3D EC 03 LDD 3,X - GET 2 LSB BYTES OF MANTISSA
BB3F DD 5F STD FPA1+2 - AND PUT IN FPA1
BB41 A6 84 LDA ,X - GET EXPONENT FROM (X) AND

30

BB43 97 5C STA FP1EXP - PUT IN EXPONENT OF FPA1
BB45 D6 4F LDB FP0EXP - GET EXPONENT OF FPA0
BB47 39 RTS - CALLED FROM B9C2

B9C5 5D TSTB - CHECK EXPONENT OF FPA0
B9C6 10 27 02 80 LBEQ LBC4A - GO IF FPA0 = 0

 ** WE WILL ASSUME FPA0 = 0 (LEANEST PSET)
 AND THUS THE BRANCH IS TAKEN.

BC4A 96 61 LBC4A LDA FP1SGN - MOVE FPA1 TO FPA0
BC4C 97 54 LBC4C STA FP0SGN -
BC4E 9E 5C LDX FP1EXP -
BC50 9F 4F STX FP0EXP -
BC52 0F 63 CLR FPSBYT -
BC54 96 5E LDA FPA1+1 -
BC56 97 51 STA FPA0+1 -
BC58 96 54 LDA FP0SGN -
BC5A 9E 5F LDX FPA1+2 -
BC5C 9F 52 STX FPA0+2 -
BC5E 39 RTS - CALLED FROM BD95

BD97 20 98 BRA LBD31 - GET ANOTHER CHAR FROM BASIC

BD31 9D 9F LBD31 JSR GETNCH - GET NEXT INPUT CHARACTER

009F 0C A7 GETNCH INC <CHARAD+1 - INCR INPUT POINTER LOW BYTE
00A1 26 02 BNE GETCCH - BRANCH IF NOT 0 (NO CARRY)

 ** SINCE OUR PURPOSE HERE IS TO SEE HOW MANY BYTES AND
 CYCLES WE CAN SAVE, WE WILL ASSUME THE BRANCH IS

31

 TAKEN HERE. THIS WILL ALLOW US TO COMPARE OUR
 PROPOSED IMPROVEMENTS ADGAINST THE LEANEST POSSIBLE
 INTERPRETATION OF THE EXISTING PSET CODE.

00A5 B6 GETCCH FCB $B6 - OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD - THESE 2 BYTES CONTAIN ADDR
 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK - JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 - IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 - BRANCH IF > 9

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

AA28 39 LAA28 RTS - CALLED FROM BD31

BD33 25 51 BCS LBD86 - BRANCH IF NUMERIC CHARACTER

 ** HAVING BEEN THROUGH LBD86 BEFORE, WE WILL ASSUME
 THAT IT IS NOT A NUMERIC CHARACTER AND THUS THE
 BRANCH IS NOT TAKEN (LEANEST PSET).

BD35 81 2E LBD35 CMPA #'. - DECIMAL POlNT?
BD37 27 28 BEQ LBD61 - GO IF YES

 ** WE WILL ASSUME THAT IT IS NOT A DECIMAL POINT
 AND THUS THE BRANCH IS NOT TAKEN.

BD39 81 45 CMPA #'E - "E" (SCIENTIFIC NOTATION)?

32

BD3B 26 28 BNE LBD65 - GO IF NO

 ** WE WILL ASSUME IT IS NOT SCIENTIFIC NOTATION
 AND THUS THE BRANCH IS TAKEN.

BD65 96 47 LBD65 LDA V47 - GET EXPONENT, SUBTRACT THE
BD67 90 45 SUBA V45 - NUMBER OF PLACES TO RIGHT
BD69 97 47 STA V47 - OF DECIMAL POINT AND RESAVE
BD6B 27 12 BEQ LBD7F - EXIT IF ADJUSTED EXPONENT= 0

 ** WE WILL ASSUME THE ADJUSTED EXPONENT IS ZERO
 AND THUS THE BRANCH IS TAKEN.

BD7F 96 55 LBD7F LDA COEFCT - GET THE SIGN FLAG
BD81 2A 8E BPL LBD11 - RETURN IF POSITIVE

 ** WE WILL ASSUME THE RESULT IS NOT POSITIVE AND
 THUS THE BRANCH IS NOT TAKEN (LEANEST PSET).

BD83 7E BE E9 JMP LBEE9 - TOGGLE MANTISSA SIGN OF FPA0

BEE9 96 4F LBEE9 LDA FP0EXP - GET EXPONENT OF FPA0
BEEB 27 02 BEQ LBEEF - BRANCH IF FPA0 = 0

 ** WE WILL ASSUME FPA0 <>0 AND THUS THE BRANCH
 IS NOT TAKEN.

BEED 03 54 COM FP0SGN - TOGGLE MANTISSA SIGN OF FPA0
BEEF 39 LBEEF RTS - CALLED FROM B163

B166 0F 3F CLR TRELFL - RESET RELATIONAL OP FLAG

33

B168 9D A5 JSR GETCCH - GET CURRENT INPUT CHARACTER

00A5 B6 GETCCH FCB $B6 - OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD - THESE 2 BYTES CONTAIN ADDR
 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK - JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 - IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 - BRANCH IF > 9

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

AA28 39 LAA28 RTS - CALLED FROM B168

B16A 80 B2 SUBA #$B2 - TOKEN FOR >
B16C 25 13 BCS LB181 - BRANCH IF < RELATIONAL OPS

 ** WE WILL ASSUME THAT IT IS LESS AND THUS THE
 BRANCH IS TAKEN (LEANEST PSET)

B181 D6 3F LB181 LDB TRELFL - GET RELATIONAL OPERATOR FLAG
B183 26 33 BNE LB1B8 - BRANCH IF RELATIONAL COMPARISON

 ** WE WILL ASSUME THAT IT IS NOT A RELATIONAL COMPARISON
 AND THUS THE BRANCH IS NOT TAKEN (LEANEST PSET).

B185 10 24 00 6B LBCC LB1F4 - BRANCH IF > RELATIONAL OP

 ** WE WILL ASSUME THAT IT IS > RELATIONAL COMPARISON

34

 AND THUS THE BRANCH IS TAKEN (LEANEST PSET).

B1F4 9E 8A LB1F4 LDX ZERO - POINT X TO DUMMY VALUE (0)
B1F6 A6 E0 LDA ,S+ - GET PRECEDENCE FLAG FROM STK
B1F8 27 26 BEQ LB220 - BRANCH IF END OF EXPRESSION

 ** WE WILL ASSUME THAT IT IS END OF EXPRESSION AND
 THE BRANCH IS TAKEN (LEANEST PSET).

B220 D6 4F LB220 LDB FP0EXP - GET EXPONENT OF FPA0
B222 39 RTS - CALLED FROM B141

B143 1C FE LB143 ANDCC #$FE - CLEAR CARRY FLAG
B145 7D FCB $7D - OP CODE OF TST $1A01
 SKIP TWO BYTES (DO NOT
 CHANGE CARRY FLAG)
B146 1A 01 ORCC #1 - SET CARRY
B148 0D 06 TST VALTYP - TEST TYPE FLAG
B14A 25 03 BCS LB14F - BRANCH IF STRING

 ** WE WILL ASSUME IT IS NOT A STRING AND THUS
 THE BRANCH IS NOT TAKEN

B14C 2A 99 BPL LB0E7 - RETURN ON PLUS

 ** WE WILL ASSUME THAT IT IS POSITIVE AND THUS
 THE BRANCH IS TAKEN (POSITIVE IS TO BE
 EXPECTED FOR SCREEN COORDINATES; ALSO FOR
 LEANEST PRESET).

B0E7 39 LB0E7 RTS - CALLED FROM B70B

35

B70E BD B3 E9 JSR LB3E9 3 CONVERT FPA0 TO INTEGER IN ACCD

B3E9 96 54 LB3E9 LDA FP0SGN 2 GET FPA0 MANTISSA SIGN
B3EB 2B 5D BMI LB44A 2 ‘FC’ ERR IF NEGATIVE NUMBER

 ** WE ASSUME NO ERROR AND THUS THE BRANCH
 IS NOT TAKEN.

B3ED BD B1 43 INTCNV JSR LB143 3 ‘TM’ ERROR IF STRING VARIABLE

B143 1C FE LB143 ANDCC #$FE - CLEAR CARRY FLAG
B145 7D FCB $7D - OP CODE OF TST $1A01
 SKIP TWO BYTES (DO NOT
 CHANGE CARRY FLAG)
B146 1A 01 ORCC #1 - SET CARRY
B148 0D 06 TST VALTYP - TEST TYPE FLAG
B14A 25 03 BCS LB14F - BRANCH IF STRING

 ** WE WILL ASSUME IT IS NOT A STRING AND THUS
 THE BRANCH IS NOT TAKEN

B14C 2A 99 BPL LB0E7 - RETURN ON PLUS

 ** WE WILL ASSUME THAT IT IS POSITIVE AND THUS
 THE BRANCH IS TAKEN (POSITIVE IS TO BE
 EXPECTED FOR SCREEN COORDINATES; ALSO FOR
 LEANEST PRESET).

36

B0E7 39 LB0E7 RTS - CALLED FROM B3ED

B3F0 96 4F LDA FP0EXP 2 GET FPA0 EXPONENT
B3F2 81 90 CMPA #$90 2 COMPARE TO 32768
 LARGEST INTEGER EXPONENT AND
B3F4 25 08 BCS LB3FE 2 BRANCH IF FPA0 < 32768

 ** WE ASSUME THAT THE EXPONENT IS LESS THAN 32768
 AND THUS THE BRANCH IS TAKEN.

B3FE BD BC C8 LB3FE JSR LBCC8 3 CONVERT FPA0 TO A 2-BYTE INT

BCC8 D6 4F LBCC8 LDB FP0EXP - GET EXPONENT OF FPA0
BCCA 27 3D BEQ LBD09 - ZERO MANTISSA IF FPA0 = 0

 ** WE WILL ASSUME FPA0 <> 0 AND THUS THE BRANCH
 IS NOT TAKEN.

BCCC C0 A0 SUBB #$A0 - SUBTRACT $A0 FROM FPA0 EXP
BCCE 96 54 LDA FP0SGN - TEST SIGN OF FPA0 MANTISSA
BCD0 2A 05 BPL LBCD7 - BRANCH IF POSITIVE

 ** WE WILL ASSUME THAT IT IS POSITIVE AND THUS
 THE BRANCH IS TAKEN (POSITIVE IS TO BE
 EXPECTED FOR SCREEN COORDINATES; ALSO FOR
 LEANEST PRESET).

BCD7 8E 00 4F LBCD7 LDX #FP0EXP - POINT X TO FPA0
BCDA C1 F8 CMPB #-8 - EXPONENT DIFFERENCE < -8?
BCDC 2E 06 BGT LBCE4 - GO IF YES

37

 ** WE WILL ASSUME THAT IT IS NOT AND THUS
 THE BRANCH IS NOT TAKEN.

BCDE BD BA AE JSR LBAAE - SHIFT FPA0 RIGHT UNTIL
 FPA0 EXPONENT = $A0

BAAE CB 08 LBAAE ADDB #8 - ADD 8 TO DIFFERENCE OF EXPS
BAB0 2F E8 BLE LBA9A - BRANCH IF EXP DIFF < -8

 ** WE WILL ASSUME THAT IT IS NOT AND THUS
 THE BRANCH IS NOT TAKEN.

BAB2 96 63 LDA FPSBYT - GET FPA SUB BYTE
BAB4 C0 08 SUBB #8 - CAST OUT 8 ADDED IN ABOVE
BAB6 27 0C BEQ LBAC4 - BRANCH IF EXPONENT DIFF = 0

 ** WE WILL ASSUME THAT IT IS EQUAL TO ZERO
 THE BRANCH IS TAKEN.

BAC4 39 LBAC4 RTS - CALLED FROM B3FE

B401 DC 52 LDD FPA0+2 2 GET THE INTEGER
B403 39 RTS 1 CALLED FROM B70E

B711 4D TSTA 1 TEST MS BYTE OF INTEGER
B712 26 F2 BNE LB706 2 'FC' ERROR IF EXPR > 255

 ** WE ASSUME NO ERROR AND THUS THE BRANCH
 IS NOT TAKEN.

B714 0E A5 JMP GETCCH 2 GET CURRENT INPUT CHARACTER

38

00A5 B6 GETCCH FCB $B6 - OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD - THESE 2 BYTES CONTAIN ADDR
 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK - JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 - IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 - BRANCH IF > 9

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

AA28 39 LAA28 RTS - CALLED FROM B714

B716 BD B6 86 VAL JSR LB686 3 POINT X TO STRING ADDRESS

B686 8D CC LB686 BSR LB654 2 GET STR LENGTH AND ADDRESS

B654 BD B1 46 LB654 JSR LB146 3 'TM' ERR IF VAR TYPE=NUMERIC

B146 1A 01 ORCC #1 - SET CARRY
B148 0D 06 TST VALTYP - TEST TYPE FLAG
B14A 25 03 BCS LB14F - BRANCH IF STRING

 ** WE WILL ASSUME IT IS NOT A STRING AND THUS
 THE BRANCH IS NOT TAKEN

B14C 2A 99 BPL LB0E7 - RETURN ON PLUS

 ** WE WILL ASSUME THAT IT IS POSITIVE AND THUS

39

 THE BRANCH IS TAKEN (POSITIVE IS TO BE
 EXPECTED FOR SCREEN COORDINATES; ALSO FOR
 LEANEST PRESET).

B0E7 39 LB0E7 RTS - CALLED FROM B654

B657 9E 52 LDX FPA0+2 2 GET ADDR OF SELCTD STR DESCR
B659 E6 84 LDB ,X 2 GET LENGTH OF STRING
B65B 8D 18 BSR LB675 2 STRING DESCR LAST ON STACK?

B675 9C 0D LB675 CMPX LASTPT 2 COMPARE TO LAST DESCR ADDR
B677 26 07 BNE LB680 2 ON THE STRING STACK, RETURN
 IF DESCRIPTOR

 ** WE WILL ASSUME THAT IT IS AND THUS THE BRANCH
 IS TAKEN (LEANEST PSET).

B680 39 LB680 RTS 1 CALLED FROM B65B

B65D 26 13 BNE LB672 2 GO IF STR DESCR LAST ON STK?

 ** WE WILL ASSUME THAT IT IS THE LAST ON THE STACK
 AND THUS THE BRANCH IS TAKEN (LEANEST PSET).

B672 AE 02 LB672 LDX 2,X 2 PNT X TO ADDR OF STR NOT ON
 STRING STACK
B674 39 RTS 1 CALLED FROM B686

B688 0F 06 CLR VALTYP 2 SET VARIABLE TYPE TO NUMERIC
B68A 5D TSTB 1 SET FLAGS ACCORDING TO LNGTH
B68B 39 RTS 1 CALLED FROM B716

40

B719 10 27 03 1C LBEQ LBA39 4 IF NULL STRING SET FPA0

 ** IT DOES NOT SEEM REASONABLE TO THINK THAT THERE
 WOULD BE A NULL STRING AT THIS POINT. tHEREFORE,
 WE WILL ASSUME THAT THE BRANCH IS NOT TAKEN.

B71D DE A6 LDU CHARAD 2 SAVE INPUT POINTER IN REG U
B71F 9F A6 STX CHARAD 2 PNT INPT PTR TO ADDR OF STR
B721 3A ABX 1 MOVE PTR TO END OF STR TERM
B722 A6 84 LDA ,X 2 GET LAST BYTE OF STRING
B724 34 52 PSHS U,X,A 2 SAVE INP PTR, STR TERMINATOR
 ADDRESS AND CHARACTER
B726 6F 84 CLR ,X 2 CLEAR STRING TERMINATOR :
 FOR ASCII - FP CONVERSION
B728 9D A5 JSR GETCCH 2 GET CURRENT CHARACTER

00A5 B6 GETCCH FCB $B6 - OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD - THESE 2 BYTES CONTAIN ADDR
 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK - JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 - IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 - BRANCH IF > 9

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

AA28 39 LAA28 RTS - CALLED FROM B728

41

B72A BD BD 12 JSR LBD12 3 CONVERT AN ASCII STR TO FP

BD12 9E 8A LBD12 LDX ZERO - (X) = 0
BD14 9F 54 STX FP0SGN - ZERO OUT FPA0 & SIGN FLAG
BD16 9F 4F STX FP0EXP -
BD18 9F 51 STX FPA0+1 -
BD1A 9F 52 STX FPA0+2 -
BD1C 9F 47 STX V47 - INITIALIZE EXPONENT & SIGN
 FLAG TO ZERO
BD1E 9F 45 STX V45 - INITIALIZE RIGHT DECIMAL CTR
 & DECIMAL PT FLAG TO 0
BD20 25 64 BCS LBD86 - IF CARRY SET (NUMERIC
 CHARACTER), ASSUME ACCA
 CONTAINS FIRST NUMERIC CHAR,
 SIGN IS POSITIVE AND SKIP
 THE RAM HOOK

 ** WE WILL ASSUME A NUMERIC CHARACTER AND THUS THE
 BRANCH IS TAKEN (LEANEST PSET).

BD86 D6 45 LBD86 LDB V45 - GET THE RIGHT DECIMAL COUNTER
BD88 D0 46 SUBD V46 - AND SUBTRACT DECIMAL PNT FLAG
BD8A D7 45 STB V45 -
BD8C 34 02 PSHS A - SAVE NEW DIGIT ON STACK
BD8E BD BB 6A JSR LBB6A - MULTIPLY FPA0 BY 10

BB6A BD BC 5F LBB6A JSR LBC5F - TRANSFER FPA0 TO FPA1

BC5F DC 4F LBC5F LDD FP0EXP - TRANSFER EXPONENT & MS BYTE
BC61 DD 5C STD FP1EXP -
BC63 9E 51 LDX FPA0+1 - TRANSFER MIDDLE TWO BYTES

42

BC65 9F 5E STX FPA1+1 -
BC67 9E 53 LDX FPA0+3 - TRANSFER BOTTOM TWO BYTES
BC69 9F 60 STX FPA1+3 -
BC6B 4D TSTA - SET FLAGS PER EXPONENT
BC6C 39 RTS - CALLED FROM B72A

B72D 35 52 PULS A,X,U 2 RESTORE CHARACTERS AND PTRS
B72F A7 84 STA ,X 2 REPLACE STRING TERMINATOR
B731 DF A6 STU CHARAD 2 RESTORE INPUT CHARACTER
B733 39 RTS 1 CALLED FROM 92FC

92FF 10 8E 00 BD LDY #HORBEG 4 POINT Y TO TEMP STORAGE LOC
9303 C1 C0 CMPB #192 2 IS VERT COORD > 191?
9305 25 02 BLO L9309 2 GO IF NO

 ** WE WILL ASSUME THAT THE VERTICAL Y-COORDINATE
 IS IN RANGE AND THUS THE BRANCH IS TAKEN.

9309 4F L9309 CLRA 1 HIGH ORDER BYTE OF VER COORD
930A ED 22 STD $02,Y 2 SAVE VERTICAL COORDINATE
930C DC 2B LDD BINVAL 2 GET RAW HORIZONTAL COORD
930E 10 83 01 00 CMPD #256 4 IS IT WITHIN RANGE?
9312 25 03 BLO L9317 2 GO IF YES

 ** WE WILL ASSUME THAT THE HORIZONTAL X-COORDINATE
 IS IN RANGE AND THUS THE BRANCH IS TAKEN.

9317 ED A4 L9317 STD ,Y 2 SAVE HORIZONTAL COORDINATE
9319 39 RTS 1 CALLED FROM 931A

931D CE 00 BD LDU #HORBEG 3 POINT U TO HOR & VER COORDS

43

9320 96 B6 LDA PMODE 2 GET PHODE
9322 81 02 CMPA #$02 2 CHECK MODE
9324 24 06 BCC L932C 2 BRANCH IF > 1

 ** FOR OUR "LEANEST PSET" PURPOSES, WE WILL ASSUME
 THAT PMODE > 1 AND THUS THE BRANCH IS TAKEN.

 (ALTHOUGH AT OUR CURRENT LINE COUNT OF 1306, THE
 TERM "LEANEST" MAY SEEM A BIT IRRELEVANT).
 [OR AT LEAST IRREVERENT] :-)

932C 96 B6 L932C LDA PMODE 2 GET PMODE
932E 81 04 CMPA #$04 2 CHECK PMODE
9330 24 06 BCC L9338 2 BRANCH IF PMODE = 4

 ** AGAIN (LEANEST PSET) WE WILL ASSUME THE BRANCH
 IS TAKEN.

9338 39 L9338 RTS 1 CALLED FROM 936B

936E BD 95 81 JSR L9581 3 EVALUATE COLOR
 RETURN IN WCOLOR; ALLCOL

9581 BD 95 9A L9581 JSR L959A 3 GET THE COLOR OF A BYTE

959A D6 B2 L959A LDB FORCOL 2 GET FOREGROUND COLOR
959C 0D C2 TST SETFLG 2 CHECK PSET/PRESET FLAG
959E 26 02 BNE L95A2 2 BRANCH IF PSET

 ** SINCE WE ARE UNWINDING PSET HERE, THE BRANCH
 WILL DEFINITELY BE TAKEN.

44

95A2 D7 B4 L95A2 STB WCOLOR 2 TEMP STORE COLOR
95A4 86 55 LDA #$55 2 CONSIDER A BYTE AS 4 PIXELS
95A6 3D MUL 1 SET COLOR ON ALL 4 PIXElS
95A7 D7 B5 STB ALLCOL 2 SAVE BYTE WITH ALL PIXELS
 TURNED ON
95A9 39 RTS 1 CALLED FROM 9581

9584 9D A5 JSR GETCCH 2 CHECK CURRENT INPUT CHAR

00A5 B6 GETCCH FCB $B6 - OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD - THESE 2 BYTES CONTAIN ADDR
 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK - JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 - IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 - BRANCH IF > 9

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

AA28 39 LAA28 RTS - CALLED FROM 9584

9586 27 10 BEQ L9598 2 BRANCH IF NONE

 ** WE WILL ASSUME THAT THERE IS NONE AT THIS POINT
 (LEANEST PSET) AND THUS THE BRANCH IS TAKEN.

9598 0E A5 L9598 JMP GETCCH 2 CHECK INPUT CHAR & RETURN

45

00A5 B6 GETCCH FCB $B6 - OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD - THESE 2 BYTES CONTAIN ADDR
 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK - JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 - IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 - BRANCH IF > 9

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

AA28 39 LAA28 RTS - CALLED FROM 936E

9371 BD B2 67 JSR LB267 3 SYNTAX CHECK FOR ‘)‘

B267 C6 29 LB267 LDB #') 2 SYNTAX CHECK FOR ‘)‘
B269 8C FCB SKP2 1 SKIP 2 BYTES
B26A C6 28 LDB #'(2 SYNTAX CHECK FOR ‘(‘

 ** "8C C6 28" IS SKIPPED

B26C 8C FCB SKP2 1 SKIP 2 BYTES
B26D C6 2C LDB #', 2 SYNTAX CHECK FOR COMMA

 ** "8C C6 2C" IS SKIPPED

B26F E1 9F 00 A6 CMPB [CHARAD] 4 COMPARE ACCB TO CURR INPUT
B273 26 02 BNE LB277 2 CHARACTER - SYNTAX ERROR
 IF NO MATCH

46

 ** WE WILL ASSUME THERE IS A MATCH AND THUS THE
 BRANCH IS NOT TAKEN.

B275 0E 9F JMP GETNCH 2 GET A CHARACTER

009F 0C A7 GETNCH INC <CHARAD+1 - INCR INPUT POINTER LOW BYTE
00A1 26 02 BNE GETCCH - BRANCH IF NOT 0 (NO CARRY)

 ** SINCE OUR PURPOSE HERE IS TO SEE HOW MANY BYTES AND
 CYCLES WE CAN SAVE, WE WILL ASSUME THE BRANCH IS
 TAKEN HERE. THIS WILL ALLOW US TO COMPARE OUR
 PROPOSED IMPROVEMENTS ADGAINST THE LEANEST POSSIBLE
 INTERPRETATION OF THE EXISTING PSET CODE.

00A5 B6 GETCCH FCB $B6 - OP CODE OF LDA EXTENDED
00A6 ?? ?? CHARAD - THESE 2 BYTES CONTAIN ADDR
 OF THE CURRENT CHAR WHICH
 THE BASIC INTERPRETER IS
 PROCESSING
00A8 7E AA 1A JMP BROMHK - JUMP BACK INTO BASIC ROM

AA1A 81 3A BROMHK CMPA #'9+1 - IS THIS CHAR >=(ASCII 9)+1?
AA1C 24 0A BHS LAA28 - BRANCH IF > 9

 ** WE WILL ASSUME THE BRANCH IS TAKEN (LEANEST PSET)

AA28 39 LAA28 RTS - CALLED FROM 9371

9374 BD 92 98 JSR L9298 3 CALCULATE THE ABSOLUTE ADDR
 OF THE BYTE TO PSET/PRESET
 RETURN ADDRESS IN X - THE

47

 MASK OF PIXEL TO CHANGE
 RETURNED IN ACCA SET A
 PIXEL ON SCREEN - ABS POSIT
 IN X, MASK IN ACCA, COLOR
 IN ALLCOL

9298 8D F5 L9298 BSR L928F 2 GO GET JUMP ADDRESS

928F CE 92 9C L928F LDU #L929C 3 JUMP TABLE ADDRESS TO U
9292 96 B6 LDA PMODE 2 GET PMODE VALUE
9294 48 ASLA 1 MUL ACCA X2: 2 BYTES PER ADR
9295 EE C6 LDU A,U 2 GET JUMP ADDRESS
9297 39 RTS 1 CALLED FROM 9298

929A 6E C4 JMP ,U 2 GO TO IT

 ** FOR LEANEST PSET, WE WILL ASSUME THAT PMODE = 4
 AND THUS #L929C + 8 = #L92A4 AND, SINCE 92A4 IS:

 92A4 92 A6 L92A4 FDB L92A6 2 PMODE 4

 THE JUMP IS MADE TO L92A6:

92A6 34 44 L92A6 PSHS U,B 2 SAVE REGISTERS
92A8 D6 B9 LDB HORBYT 2 GET NUMBER BYTES PER
 HOR GRAPHIC ROW
92AA 96 C0 LDA VERBEG+1 2 GET VERTICAL COORDINATE
92AC 3D MUL 1 CALC VERTICAL BYTE OFFSET
92AD D3 BA ADDD BEGGRP 2 ADD START OF GRAPHIC PAGE
92AF 1F 01 TFR D,X 2 SAVE TEMP VALUE IN X REG
92B1 D6 BE LDB HORBEG+1 2 GET HORIZONTAL COORDINATE

48

92B3 54 LSRB 1 DIVIDE BY 8
92B4 54 LSRB 1
92B5 54 LSRB 1
92B6 3A ABX 1 ADD HOR BYTE OFFSET
92B7 96 BE LDA HORBEG+1 2 GET HORIZONTAL COORDINATE
92B9 84 07 ANDA #$07 2 KEEP ONLY BITS 0-2, WHICH
 CONTAIN THE NUMBER OF THE
 PIXEL IN THE BYTE
92BB CE 92 DD LDU #L92DD 3 POINT U TO MASK LOOKUP TABLE
92BE A6 C6 LDA A,U 2 GET PIXEL MASK
92C0 35 C4 PULS B,U,PC 2 CLEAR STACK AND RTS
 CALLED FROM 9374

9377 E6 84 L9377 LDB ,X 2 GET BYTE FROM THE SCREEN
9379 34 04 PSHS B 2 SAVE IT ON STACK
937B 1F 89 TFR A,B 2 PUT PIXEL MASK IN ACCB
937D 43 COMA 1 INVERT PIXEL MASK
937E A4 84 ANDA ,X 2 SET THE PIXEL
9380 D4 B5 ANDB ALLCOL 2 CONVERT PIXEL IN THE PIXEL
 MASK TO THE PROPER COLOR
9382 34 04 PSHS B 2 SAVE IT ON STACK
9384 AA E0 ORA ,S+ 2 ‘OR’ IT INTO THE REST OF
 THE PIXELS
9386 A7 84 STA ,X 2 PUT IT ON SCREEN
9388 A0 E0 SUBA ,S+ 2 SUBTRACT OLD BYTE FROM NEW
 BYTE; ACCA=0 IF NEW
 BYTE = OLD BYTE
938A 9A DB ORA CHGFLG 2 ‘OR’ DIFFERENCE WITH
 CHANGE FLAG
938C 97 DB STA CHGFLG 2 SAVE IT
938E 39 RTS 1 END OF ROM PSET UNWOUND

49

 ** THIS UNWINDING OF THE ROM PSET NOW ENDS
 AT A LINE COUNT OF 1487.

=====

